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SOFTWARE SECURITY

Software vulnerabilities remain a critical
1ssue for software security.

Over 53,000 vulnerabilities were disclosed for
the last three years.

A Russian-based espionage campaign
compromised U.S. federal agencies in 2020.

{ ; National Security Agency Cybersecurity Advisory

Russian State-Sponsored Actors Exploiting Vulnerability in
VMware® Workspace ONE Access Using Compromised

Credentials



VULNERABILITIES IN PRIVILEGED
CODE

0 Exploiting vulnerabilities in
privileged code can cause the most
severe damages
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PRINCIPLE OF LEAST PRIVILEGE

0 Separating a program into a
privileged part and a non-privileged
part
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PROGRAM PARTITIONING

- Each program partition can run in its own
address space

1 Partitions communicate via a guarded
interface

2 Improves software security
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AUTOMATIC PROGRAM PARTITIONING

- Each partition implemented as an separate
program

2 Communication implemented using RPC
function calls

- Partitioning at function level
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ISSUE WITH FUNCTION-LEVEL
PARTITIONING

- How do we partition functions containing
intertwined privileged code and non-
privileged code?
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A NAIVE SOLUTION

1 The naive solution can result in a high
number of RPC calls between partitions.
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FINE-GRAINED PROGRAM
PARTITIONING

o Partitioning within a function
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FINE-GRAINED PROGRAM
PARTITIONING

Using static program analysis to
partition functions in existing
programs

Focusing on two hot spot
programming patterns

Merging code together to reduce the
number of RPC calls



PATTERN #1: NON-PRIVILEGED TO
PRIVILEGED

2 Non-privileged code followed by
privileged code
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SOLUTION #1: NON-PRIVILEGED TO
PRIVILEGED
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PATTERN #2: PRIVILEGED TO NON-
PRIVILEGED — SIMPLE CASE

o Privileged code followed by non-
privileged code
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PATTERN #2: PRIVILEGED TO NON-
PRIVILEGED — COMPLEX CASE
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SOLUTION #2: PRIVILEGED TO NON-
PRIVILEGED
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PROGRAM PARTITIONING STEPS

|dentifying Hotspot

Creating Primary
Function A*

Creating Secondary
Function A

Producing RPC
Interface




IMPLEMENTATION

We implemented a prototype that
partitions C/C++ programs.
1dentifies hotspots
creates primary functions
creates secondary functions

All primary and secondary functions
are automatically created in the form
of source code.



EVALUATION - BENCHMARKS

The prototype 1s evaluated on 10
networking and interactive programs.

ssh

wget

Eight Linux shadow utilities, e.g. chsh,
passwd, useradd, userdel, etc.



EVALUATION RESULTS

The prototype 1s etfective for all
benchmark programs.

1dentifies hotspots

creates primary functions

creates secondary functions

The mean runtime overhead
introduced by partitioning i1s 5.2%.

Merging code results 1n 1.38x speed
up.



CONCLUSION

Fine-grained partitioning enables
separation of intertwined privileged
code and non-privileged code.

It improves performance of
partitioned programs.
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