FINE-GRAINED PROGRAM

@ PARTITIONING FOR SECURITY
‘ Zhen Huang¥*, Trent Jaeger?, Gang Tan*

* School of Computing, DePaul University

‘ # School of Electrical Engineering & Computer .
Science, Pennsylvania State University G

¢
=
-~
>y
\




OUTLINE

Program Partitioning For Security
Fine-grained Program Partitioning
Implementation

Evaluation

Conclusion



SOFTWARE SECURITY

Software vulnerabilities remain a critical
1ssue for software security.

Over 53,000 vulnerabilities were disclosed for
the last three years.

A Russian-based espionage campaign
compromised U.S. federal agencies in 2020.

{ ; National Security Agency Cybersecurity Advisory

Russian State-Sponsored Actors Exploiting Vulnerability in
VMware® Workspace ONE Access Using Compromised

Credentials



VULNERABILITIES IN PRIVILEGED
CODE

0 Exploiting vulnerabilities in
privileged code can cause the most
severe damages

Privileged Code

Privileged
Data

Injected Code

S Privileged

Operation




PRINCIPLE OF LEAST PRIVILEGE

0 Separating a program into a
privileged part and a non-privileged
part

Program Partition
Program

Non-Privileged
Non-Privileged

Privileged Program Partition
Privileged




PROGRAM PARTITIONING

- Each program partition can run in its own
address space

1 Partitions communicate via a guarded
interface

2 Improves software security

Program Partition Program Partition
Non-Privileged Privileged




AUTOMATIC PROGRAM PARTITIONING

- Each partition implemented as an separate
program

2 Communication implemented using RPC
function calls

- Partitioning at function level

Program Partition Program Partition

Non-Privileged Privileged
functions ) functions

Non-Privileged Privileged
data data




ISSUE WITH FUNCTION-LEVEL
PARTITIONING

- How do we partition functions containing
intertwined privileged code and non-
privileged code?

Program Program Partition

Non-Privileged

Non-Privileged

Program Partition

Privileged
Non-Privileged

Privileged Privileged




A NAIVE SOLUTION

1 The naive solution can result in a high
number of RPC calls between partitions.

Program Partition Program Partition

Non-Privileged -
Privileged #1

Call Al

Non-Privileged

Call A2 Privileged #2




OUTLINE

Program Partitioning For Security
Fine-grained Program Partitioning
Communication between Partitions
Evaluation

Conclusion



FINE-GRAINED PROGRAM
PARTITIONING

o Partitioning within a function

Program Partition
Program

Non-Privileged
Non-Privileged

Privileged

Non-Privileged

Privileged




FINE-GRAINED PROGRAM
PARTITIONING

Using static program analysis to
partition functions in existing
programs

Focusing on two hot spot
programming patterns

Merging code together to reduce the
number of RPC calls



PATTERN #1: NON-PRIVILEGED TO
PRIVILEGED

2 Non-privileged code followed by
privileged code

Program

Non-Privileged

Privileged #1

Privileged #2




SOLUTION #1: NON-PRIVILEGED TO
PRIVILEGED

Program Partition Program Partition

Non-Privileged Privileged #1




PATTERN #2: PRIVILEGED TO NON-
PRIVILEGED — SIMPLE CASE

o Privileged code followed by non-
privileged code

Program
Privileged

r [t?
case #1 =St case #2

Non-Privileged Non-Privileged




PATTERN #2: PRIVILEGED TO NON-
PRIVILEGED — COMPLEX CASE

Program

Privileged #1

Non-Privileged Non-Privileged

Privileged #2

Non-Privileged Non-Privileged




SOLUTION #2: PRIVILEGED TO NON-
PRIVILEGED

Program Partition Program Partition

Privileged #1

Non-Privileged Privileged #2

Non-Privileged
Non-Privileged

Non-Privileged




PROGRAM PARTITIONING STEPS

|dentifying Hotspot

Creating Primary
Function A*

Creating Secondary
Function A

Producing RPC
Interface




IMPLEMENTATION

We implemented a prototype that
partitions C/C++ programs.
1dentifies hotspots
creates primary functions
creates secondary functions

All primary and secondary functions
are automatically created in the form
of source code.



EVALUATION - BENCHMARKS

The prototype 1s evaluated on 10
networking and interactive programs.

ssh

wget

Eight Linux shadow utilities, e.g. chsh,
passwd, useradd, userdel, etc.



EVALUATION RESULTS

The prototype 1s etfective for all
benchmark programs.

1dentifies hotspots

creates primary functions

creates secondary functions

The mean runtime overhead
introduced by partitioning i1s 5.2%.

Merging code results 1n 1.38x speed
up.



CONCLUSION

Fine-grained partitioning enables
separation of intertwined privileged
code and non-privileged code.

It improves performance of
partitioned programs.



Thank You!

zhen.huang@depaul.edu




