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What’s all the fuzz about?

• Problem: Many different fuzzers to choose from! Many scripts to 
write!

Answer: run them together, orchestrated by CollabFuzz
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Collaborative fuzzing
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EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers  
(USENIX Sec ‘19)
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CollabFuzz Framework
• Allows for a central manager to 

orchestrate many fuzzers 

• The managed fuzzers can be 
different fuzzers 

• Supports: AFL, AFLFast, AFL++, 
FairFuzz, Honggfuzz, LibFuzzer, 
QSYM, Radamsa 

• A framework to collect results and 
perform analysis during a 
collaborative fuzzing campaign
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Scheduling policies
• Broadcast/ EnFuzz: send all test cases to all fuzzers 

• (Cost-) Benefit: use a “benefit” heuristics to select what seeds to 
send out 

• In essence two possible “planes” to schedule on 

• Temporally: when to send out test case 

• Spatial: which fuzzers should get the test case
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Scheduling results

• We could not observe any statistically significant improvements 

• Reasons: 

• No actual control over what the fuzzers work on (interface) 

• We might not use the right features 
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Future ideas in scheduling

• Scheduling at a different level 

• Test case vs. resource scheduling 

• More fine-grained control 

• Branch-level scheduling
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Using CollabFuzz for Evaluations

• Repeatability of experiments 

• Large-scale experiments on a cluster 

• Real-time analysis of campaign
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Analysis 

• Analysis passes can run when a new test case is discovered by a 
fuzzer 

• E.g., get the coverage of the test case 

• Allows pipelining (i.e., do taint track analysis if there is new 
coverage) 

• Quite flexible
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Analysis Passes
• Coverage 

• Taint information 

• Tainted instruction count pass 

• Branch analysis 

• Flexible: global aggregate data, 
per-fuzzer data, per test-case data
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Technical Info
• Each fuzzer needs a “driver”

• Program to monitor the fuzzer (we have a generic one for AFL-like 
fuzzers) 

• Drivers communicate with the framework over ZeroMQ 

• Allows large-scale distributed fuzzing 

• Framework: Rust, driver: Python
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Configuration

• Sets up experiments using YAML files 

• Easy to queue long-running experiments 

• All fuzzer-targets are contained within Docker containers 

• It’s even possible to run experiments on a cluster using 
Docker Swarm/ Kubernetes

Targets

Parameters

Fuzzer config
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Logging

• The framework dumps all data in a 
sqlite database 

• E.g., all the analysis pass results, 
scheduling decisions, fuzzer events
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CUPID (ACSAC ’20) CollabFuzz (EuroSec ’21)
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DEMO
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Conclusion

• CollabFuzz: orchestrate collaborative fuzzing campaigns, also in a 
distributed setting 

• Allows expression of scheduling policies 

• Enables real-time analysis of large-scale campaigns 

• Available at: github.com/vusec/collabfuzz

@vu5ec 
@sirmc
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