
CollabFuzz: A Framework for
Collaborative Fuzzing

Elia GerettoSebastian Österlund Andrea Jemmett

Philipp Görz Thorsten Holz Cristiano Giuffrida Herbert Bos

Emre Güler

Ruhr-Universität Bochum Vrije Universiteit Amsterdam

1

What’s all the fuzz about?

• Problem: Many different fuzzers to choose from! Many scripts to
write!

Answer: run them together, orchestrated by CollabFuzz

2

Collaborative fuzzing

Seeds Fuzzer Binary

Single Collaborative

Seeds

Fuzzer Binary

Fuzzer Binary

EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers
(USENIX Sec ‘19)

3

CollabFuzz Framework
• Allows for a central manager to

orchestrate many fuzzers

• The managed fuzzers can be
different fuzzers

• Supports: AFL, AFLFast, AFL++,
FairFuzz, Honggfuzz, LibFuzzer,
QSYM, Radamsa

• A framework to collect results and
perform analysis during a
collaborative fuzzing campaign

4

CollabFuzz Framework

Seeds

Fuzzer container

Driver

Fuzzer

Fuzzer

target

Manager container

Storage

Analysis

states

Scheduler

Analysis

workers

Analysis

programs

Source

code

5

Scheduling policies
• Broadcast/ EnFuzz: send all test cases to all fuzzers

• (Cost-) Benefit: use a “benefit” heuristics to select what seeds to
send out

• In essence two possible “planes” to schedule on

• Temporally: when to send out test case

• Spatial: which fuzzers should get the test case

6

Scheduling results

• We could not observe any statistically significant improvements

• Reasons:

• No actual control over what the fuzzers work on (interface)

• We might not use the right features

7

Future ideas in scheduling

• Scheduling at a different level

• Test case vs. resource scheduling

• More fine-grained control

• Branch-level scheduling

8

Using CollabFuzz for Evaluations

• Repeatability of experiments

• Large-scale experiments on a cluster

• Real-time analysis of campaign

9

Analysis

• Analysis passes can run when a new test case is discovered by a
fuzzer

• E.g., get the coverage of the test case

• Allows pipelining (i.e., do taint track analysis if there is new
coverage)

• Quite flexible

10

Analysis Passes
• Coverage

• Taint information

• Tainted instruction count pass

• Branch analysis

• Flexible: global aggregate data,
per-fuzzer data, per test-case data

11

12

Technical Info
• Each fuzzer needs a “driver”

• Program to monitor the fuzzer (we have a generic one for AFL-like
fuzzers)

• Drivers communicate with the framework over ZeroMQ

• Allows large-scale distributed fuzzing

• Framework: Rust, driver: Python

13

Configuration

• Sets up experiments using YAML files

• Easy to queue long-running experiments

• All fuzzer-targets are contained within Docker containers

• It’s even possible to run experiments on a cluster using
Docker Swarm/ Kubernetes

Targets

Parameters

Fuzzer config

14

Logging

• The framework dumps all data in a
sqlite database

• E.g., all the analysis pass results,
scheduling decisions, fuzzer events

15

CollabFuzz Framework

Seeds

Fuzzer container

Driver

Fuzzer

Fuzzer

target

Manager container

Storage

Analysis

states

Scheduler

Analysis

workers

Analysis

programs

Source

code

16

CUPID (ACSAC ’20) CollabFuzz (EuroSec ’21)

17

DEMO

18

Conclusion

• CollabFuzz: orchestrate collaborative fuzzing campaigns, also in a
distributed setting

• Allows expression of scheduling policies

• Enables real-time analysis of large-scale campaigns

• Available at: github.com/vusec/collabfuzz

@vu5ec
@sirmc

19

CollabFuzz: A Framework for
Collaborative Fuzzing

Elia GerettoSebastian Österlund Andrea Jemmett

Philipp Görz Thorsten Holz Cristiano Giuffrida Herbert Bos

Emre Güler

Ruhr-Universität Bochum Vrije Universiteit Amsterdam

20

